
Mizar
Current state and work in progress

https://github.com/futurewei-cloud/mizar

https://github.com/futurewei-cloud/mizar

The Problem We are Trying to Solve

• Support provisioning and management of large number endpoints (300K hosts, 10M endpoints)

• Accelerate network resource provisioning for dynamic cloud environments

• Achieve high network throughput and low latency

• Create an extensible cloud-network of pluggable network functions

• Unify the network data-plane for containers, serverless functions, virtual machines, etc!

Problems with Current solutions
• Program every host every time a user provision an endpoint:

• Approaching cloud-networking with a conventional programming model and network devices
• e.g. OpenFlow programming in OVS
• Virtual Switches and Routes are essentially softwareization of hardware switches and routers, but not

necessarily programmable to support rapid network changes.

• Existing solution bring up software network devices, that are primarily created for Teleco, ISP, or datacenter
networking and run them in virtual machines to support cloud networking.

• Packets traverses multiple network stacks on the same host

• Packets traverses multiple network devices (as if we are operating a data-center), while these functions
could be consolidated during design.

Problems with Current solutions (e.g. Neutron)

Mizar Simplified Node design for VMs, Containers,
and legacy network services

eth

Transit
XDP

VM, Container,
Or Legacy
network
service

veth

veth pair

Transit
Agent
XDP

Transit
Daemon

(User space)

Neutron
Agent

CNI
Agent

Custom
Control

Linux bridge (qbr)

OVS (br-int)

OVS (br-tun)

Virtual
Machine

vNIC

tap

qvb

patch-tun

iptables

qvo

patch-int

 tun

Linux Networking
Stack (Conntrac/TC)

OVS Based Solutions (e.g. Neutron)

eth

DPDK
bypass

Neuton Legacy
Packet processing
Insures significant

overhead

Line Rate
50 Mpps

1Mpps

User Space

Kernel Space

Line Rate
50 Mpps

20 Mpps

Mizar Architectural evolution towards a simplified, efficient, and scalable data planeSource: https://docs.openstack.org/neutron/pike/admin/deploy-lb-selfservice.html

Observation (not really a new one):

Mizar Simplified Node design for VMs, Containers,
and legacy network services

eth

Transit
XDP

VM, Container,
Or Legacy
network
service

veth

veth pair

Transit
Agent
XDP

Transit
Daemon

(User space)

Neutron
Agent

CNI
Agent

Custom
Control

Linux bridge (qbr)

OVS (br-int)

OVS (br-tun)

Virtual
Machine

vNIC

tap

qvb

patch-tun

iptables

qvo

patch-int

 tun

Linux Networking
Stack (Conntrac/TC)

OVS Based Solutions (e.g. Neutron)

eth

DPDK
bypass

Neuton Legacy
Packet processing
Insures significant

overhead

Line Rate
50 Mpps

1Mpps

User Space

Kernel Space

Line Rate
50 Mpps

20 Mpps

Mizar Architectural evolution towards a simplified, efficient, and scalable data plane

• In a cloud network (overlay), most functions can be reduced to
1. Encapsulate/decapsulate a packet
2. Modify the outer packet header and forward it
3. Modify the inner packet header and forward it
4. Drop unwanted packets

• Several network functions can be thought of in a similar way:
1. Responding to ARP
2. DHCP
3. NAT
4. Passthrough load-balancing

Mizar Overall Architecture!
• Natural Partitioning domains of Cloud Network

• Virtual Private Cloud VPC
• Networks within a VPC
• Endpoints within a network

• Goal: Constant time provisioning of endpoints

• Bouncer:
• In-network hash tables
• Holds the configuration of endpoints within a network
• Determines flow modifications, and bounce the packet for TX
• Implements all middleboxes within a network

• Divider
• In-network hash tables
• Holds the configuration of Bouncers within a VPC
• Divides the VPCs endpoint’s configuration into clusters of Bouncers
• Implements all middleboxes at the VPC level

Network

Virtual
Machine

Virtual
Machine

Virtual
Machine

Virtual
Machine

Virtual
MachineContainer

Transit Switch
(In-network table

In XDP)

Transit Switch
(In-network table

In XDP)
Bouncer

(In-network/In-
host XDP)

Transit Router
(XDP)Transit Router

(XDP)
Divider

(In-network/In-
host XDP)

VPC

Transit Switch
(In-network table

In XDP)

Transit Switch
(In-network table

In XDP)
Bouncer

(In-network/In-
host XDP)

Network

Management Plane

Virtual
Machine

Virtual
MachineServerless

Background XDP: Simplified and Extensible Packet
Processing Near Line Rate

• Packet processing is entirely in-kernel.

• Makes the best use of kernel packet processing
constructs without being locked-in to a specific
processor architecture.

• Skip unnecessary stages of network stack
whenever possible and transit packet processing it
to smart NICs.

• Very small programs < 4KB

Socket Layer

TCP Stack

Connection Tracking

Traffic Control

XDP

NIC

eBPF

eBPF

eBPF

Line Rate
50 Mpps

20 Mpps

5 Mpps

1 Mpps

Kernel

Driver

HW Offload

Cilium
(Except pre-

filter)

Mizar
(Entire business logic)

Upper layers are always
skipped

Cilium

DPDK based solution
(In User space)

DPDK
Note a driver
is still needed

for DPDK

Inside a Mizar host

Linux bridge (qbr)

OVS (br-int)

OVS (br-tun)

Virtual
Machine

vNIC

tap

qvb

patch-tun

iptables

qvo

patch-int

 tun
Linux Networking

Stack (Conntrac/TC)

OVS Based Solutions (e.g. Neutron)

eth

DPDK
bypass

Neuton Legacy
Packet processing

(significant
overhead)

Line Rate
50 Mpps

1Mpps

Mizar Simplified Node design for VMs, Containers,
and legacy network services

eth

Transit
XDP

VM, Container,
Or Legacy

network service

veth

veth pair

Transit
Agent
XDP

Transit
Daemon

(User space)

Control-plane
Agent (user

configuration)

User Space

Kernel Space

Line Rate
50 Mpps

20 Mpps

EBPF maps

In-host packet flow: Bypass network stack

veth0
(VETH pair in container)

veth_peer
(VETH pair in root

namespace)

Transit
Agent
XDP

veth0
(VETH pair in container)

veth_peer
(VETH pair in root

namespace)

Transit
Agent
XDP

Namespace A Namespace B

Root Namespace

eth0
(physical interface)

Transit
XDP

TX RX TX RX

TX

RX RX

TX

RX

TX

XDP_REDIRECT
(Frame)

XDP_REDIRECT
(SKB)

• Packets traverses only the container stack

• On egress packets are redirected (SKB) to the main
interface after tunneling

• On ingress packets are redirected directly to the
container veth peer in the root namespace.

Extensible Packet Processing inside the main XDP
program!
• Implements essential logical networking function

within the same XDP program that provides multi-
tenant cloud networking solutions
through new Bouncer and Divider concepts

• Mizar autonomously adapts to various traffic
demands in immense scale cloud environments.
Allowing Mizar to serve various cloud workloads in
a multi-tenant environment optimally.

• Extensible support of native networking features
through custom chains of optimized XDP programs
hooks and Geneve protocol options. Future
possible Features including: Security, Load-
balancing, Connectivity, Traffic Shaping Control

Endpoint
lookup

Endpoint XDP
Hook

Bouncer Bouncer XDP
Hook

Divider Divider XDP
Hook

Tail-Call

Tail-Call

Tail-Call Endpoint
veth pair

REDIRECT

FORWARD

FORWARD

e.g. Security Groups

One Efficient XDP Program with Extensible Functions

e.g.Cross-VPC traffic

Example packet within a network

Three steps to provision an
endpoint

1. Add the endpoint to N
Bouncers

2. Provision the endpoint on the
host

3. Configure the host transit agent
to tunnel the endpoint traffic
to a Bouncer out of N

Endpoint
lookup

Endpoint XDP
Hook

Bouncer Bouncer XDP
Hook

Divider Divider XDP
Hook

Tail-Call

Tail-Call

Tail-Call Endpoint
veth pair

REDIRECT

FORWARD

FORWARD

e.g. Security Groups

One Efficient XDP Program with Extensible Functions

e.g.Cross-VPC traffic

DST:10.0.0.2SRC:10.0.0.1 ………
Endpoint at host 0

Transit Agent at host 0
(Bypass host stack)

DST:10.0.0.2SRC:10.0.0.1 ………DST: bouncer 0SRC: host 0 GENEVE VNI: 3

Transit XDP at bouncer 0
(In interface device driver - host stack bypassed)

DST:10.0.0.2SRC:10.0.0.1 ………DST: host1SRC: bouncer 0 GENEVE VNI: 3

Transit XDP at host 1
(In interface device driver - host stack bypassed)

Endpoint at host 1

RX

XDP_REDIRECT (SKB)

RX

XDP_TX

RX

DST:10.0.0.2SRC:10.0.0.1 ………
XDP_REDIRECT

Example packet cross networks
Endpoint
lookup

Endpoint XDP
Hook

Bouncer Bouncer XDP
Hook

Divider Divider XDP
Hook

Tail-Call

Tail-Call

Tail-Call Endpoint
veth pair

REDIRECT

FORWARD

FORWARD

e.g. Security Groups

One Efficient XDP Program with Extensible Functions

e.g.Cross-VPC traffic

DST:192.168.0.3SRC:10.0.0.1 ………
Endpoint at host 0

Transit Agent at host 0
(Bypass host stack)

DST: bouncer 0SRC: host 0 GENEVE VNI: 3

Transit XDP at bouncer 0
(In interface device driver - host stack bypassed)

DST: divider 0SRC: bouncer 0 GENEVE VNI: 3

Transit XDP at host 1
(In interface device driver - host stack bypassed)

Endpoint at host 1

RX

XDP_REDIRECT (SKB)

RX

XDP_TX

RX

XDP_REDIRECT

DST:192.168.0.3SRC:10.0.0.1 ………

DST:192.168.0.3SRC:10.0.0.1 ………

Transit XDP at divider 0
(In interface device driver - host stack bypassed)

RX

XDP_TX

DST:192.168.0.3SRC:10.0.0.1 ………

Transit XDP at bouncer 1
(In interface device driver - host stack bypassed)

RX

XDP_TX

DST: bouncer 1SRC: divider 0 GENEVE VNI: 3 DST:192.168.0.3SRC:10.0.0.1 ………

DST: host 1SRC: bouncer 1 GENEVE VNI: 3 DST:192.168.0.3SRC:10.0.0.1 ………

New endpoint types

Simple endpoint Host

Scaled endpoint HostHost
Host

1:1

1:N

Proxied Endpoint Another Endpoint
1:1

e.g. container, VM

e.g. autoscaling network function: load-balancer, NAT

e.g. inter-connect services

Problems we are working on
What’s next?

New Problems: Self-optimizing data-plane
• Smart Placement of bouncers and dividers:

• Auto scaling the bouncers and dividers:

• Can scaling and placement ensure SLAs?

• Implementation for a self-contained data-plane (no dependency on another layer
of management)?

New Problems: Constant Time Distributed Data-plane

• Minimize Hops:

• Distributed Flow Tables:

• Example services:
• Load-balancer
• NAT
• Cross-VPC routing

New Problems: Packet Forwarding optimization

• Improvements to the veth device driver:

• Per-hop congestion control:

• Ongoing: What Linux stack functions shall be reused and what to avoid?

New Problems: Application Centric Data-plane

• Coworking with TCP as a service.

• What can we learn about the application and inject as Geneve options? And
what to do about?

• How to support a network as a group of applications (not a conventional
subnet)?

• New types of endpoints?

Results we have so-far…

Notes

• All the following tests are done in SKB mode (XDP Generic), which has a performance disadvantage

• We wanted to test Mizar’s XDP program in driver mode, but for now we don’t have the needed hardware

Packet Rate (non-TCP) – Scaling Network Services

• HIT: Near line rate packet per second

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Host to Host

OVS+Linux Bridge (Direct)

Mizar (1 Bouncer)

Mizar (Direct/Fast-Path)

MILLISECONDS

SC
EN

A
RI

O

Packet Rate (Mpps - higher the better)

Endpoint Update Time with multiple Bouncers

• HIT: Constant time with parallel
updates (20ms) until the Test
Controller starts to Hit its re

• With a scalable management-plane
(on multiple machines), we foresee
maintenance of constant time
scaling.

• IMPROVEMENT: Simplifications in
data-plane as we introduce the
scaled endpoint. One core
required.

0

20

40

60

80

100

120

140

160

180

2 4 8 16 32 48

M
IL

LI
SE

CO
N

D
S

BOUNCERS

Bouncer Endpoint update time

Endpoint E2E provisioning time multiple Bouncers

• HIT: Scale remains constant (until
hitting test controller machine
limits)

• Primarily overhead on the host
from creating the virtual interfaces
by executing shell command (~250
ms).

• IMPROVEMENT: Expected to
improve with production ready
control-plane as it makes use of
netlink.

0
50

100
150
200
250
300
350
400

2 4 8 16 32 48

M
IL

LI
SE

CO
N

D
S

BOUNCERS

Total Provisioning time

Round Trip Time Effect on End-user

• HIT: Mizar direct path is faster than OVS+Linux Birdge. Though, Still has minimal impact on PPS and TCP BW

• HIT: Even with an increased latency due to the extra hop, the packet per second processed by endpoints
remains close to line rate

• Primarily benefit of fast-path is latency sensitive applications.

0 0.05 0.1 0.15 0.2 0.25 0.3

Host to Host

OVS+Linux Bridge (Direct)

Mizar (1 Bouncer)

Mizar (Direct/Fast-Path)

SC
EN

A
RI

O

Round Trip Time (milliseconds - lower the better)

TCP Bandwidth (On a slow NIC 1Gbps)

• HIT: Comparable throughput to OVS+Bridge (even though we don’t use XDP driver mode). This is applicable for
NICS < 4Gbps

• The bouncer hop accounts only for 5% less TCP throughput, which shall be negligible for very high bandwidth
NICs. This is despite that RTT of the extra hop accounts for 45% more latency.

800 820 840 860 880 900 920 940 960

Host to Host

OVS+Linux Bridge (Direct)

Mizar (1 Bouncer)

Mizar (Direct/Fast-Path)

SC
EN

A
RI

O

TCP Bandwidth (Mbps - higher the better)

TCP Bandwidth (On a faster NIC 10 Gbps)

• MISS: The TCP bandwidth caps at around 4Gbps.

• IMPROVEMENT: Change to Driver mode (require support in NIC)
• IMPROVEMENT: Change on-host wiring architecture and reduce reliance on Transit Agent
• IMPROVEMENT: Improved device driver for veth

0 2 4 6 8 10 12

Mizar (1 Bouncer)

OVS+Linux Bridge (Direct)

Maximum Bandwidth

SC
EN

A
RI

O
TCP Bandwidth on High Capacity NICs

(Gbps - higher the better)

Memory Idle case

0.45 0.50 0.55 0.60 0.65

Host to Host

OVS+Linux Bridge (Direct)

Mizar (1 Bouncer)

Mizar (Direct/Fast-Path)

SC
EN

A
RI

O

Baseline Memory (% 500GB - lower the better)

Memory During TCP Performance Tests

• HIT: Negligible Memory overhead very close to an idle host without networking constructs event with Traffic
processing

0.45 0.50 0.55 0.60 0.65

Host to Host

OVS+Linux Bridge (Direct)

Mizar (1 Bouncer)

Mizar (Direct/Fast-Path)

SC
EN

A
RI

O

TCP Traffic Memory (% 500GB - lower the better)

CPU TCP Performance Tests

• HIT: CPU Overhead is much better than OVS + Linux bridge scenario

0.45 0.95 1.45 1.95 2.45

Host to Host

OVS+Linux Bridge (Direct)

Mizar (1 Bouncer)

Mizar (Direct/Fast-Path)

SC
EN

A
RI

O

TCP Traffic CPU (lower the better)

Memory Idle case (100 Endpoints per host)

• HIT: Memory overhead on Bouncer remain at baseline level
• MISS: On Host memory increases as we provision more endpoints
• IMPROVEMENT: Share one transit agent across multiple endpoints

0.45 0.95 1.45 1.95 2.45

OVS+Linux Bridge (Direct)

Mizar (Endpoint Host)

Mizar (Bouncer)

SC
EN

A
RI

O

100 Endpoint Provisioning Memory (lower the better)

CPU During TCP Performance Tests

• HIT: Significantly less CPU overhead during provisioning on both bouncer and host

0.00 0.50 1.00 1.50 2.00 2.50

OVS+Linux Bridge (Direct)

Mizar (Endpoint Host)

Mizar (Bouncer)

SC
EN

A
RI

O

100 Endpoint Provisioning CPU (lower the better)

