
Mizar
Current state and work in progress

https://github.com/futurewei-cloud/mizar

https://github.com/futurewei-cloud/mizar


The Problem We are Trying to Solve

• Support provisioning and management of large number endpoints (300K hosts, 10M endpoints)

• Accelerate network resource provisioning for dynamic cloud environments

• Achieve high network throughput and low latency

• Create an extensible cloud-network of pluggable network functions

• Unify the network data-plane for containers, serverless functions, virtual machines, etc!



Problems with Current solutions
• Program every host every time a user provision an endpoint:

• Approaching cloud-networking with a conventional programming model and network devices
• e.g. OpenFlow programming in OVS
• Virtual Switches and Routes are essentially softwareization of hardware switches and routers, but not 

necessarily programmable to support rapid network changes. 

• Existing solution bring up software network devices, that are primarily created for Teleco, ISP, or datacenter 
networking and run them in virtual machines to support cloud networking.

• Packets traverses multiple network stacks on the same host

• Packets traverses multiple network devices (as if we are operating a data-center), while these functions 
could be consolidated during design.



Problems with Current solutions (e.g. Neutron)

Mizar Simplified Node design for VMs, Containers, 
and legacy network services
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Observation (not really a new one):

Mizar Simplified Node design for VMs, Containers, 
and legacy network services
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Mizar Architectural evolution towards a simplified, efficient, and scalable data plane

• In a cloud network (overlay), most functions can be reduced to 
1. Encapsulate/decapsulate a packet
2. Modify the outer packet header and forward it
3. Modify the inner packet header and forward it
4. Drop unwanted packets

• Several network functions can be thought of in a similar way:
1. Responding to ARP
2. DHCP
3. NAT
4. Passthrough load-balancing



Mizar Overall Architecture!
• Natural Partitioning domains of Cloud Network

• Virtual Private Cloud VPC
• Networks within a VPC
• Endpoints within a network

• Goal: Constant time provisioning of endpoints

• Bouncer:
• In-network hash tables
• Holds the configuration of endpoints within a network
• Determines flow modifications, and bounce the packet for TX
• Implements all middleboxes within a network

• Divider
• In-network hash tables
• Holds the configuration of Bouncers within a VPC
• Divides the VPCs endpoint’s configuration into clusters of Bouncers
• Implements all middleboxes at the VPC level
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Background XDP: Simplified and Extensible Packet 
Processing Near Line Rate

• Packet processing is entirely in-kernel. 

• Makes the best use of kernel packet processing 
constructs without being locked-in to a specific 
processor architecture.

• Skip unnecessary stages of network stack 
whenever possible and transit packet processing it 
to smart NICs.

• Very small programs < 4KB
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Inside a Mizar host
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In-host packet flow: Bypass network stack
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• Packets traverses only the container stack

• On egress packets are redirected (SKB) to the main 
interface after tunneling

• On ingress packets are redirected directly to the 
container veth peer in the root namespace.



Extensible Packet Processing inside the main XDP 
program! 
• Implements essential logical networking function 

within the same XDP program that provides multi-
tenant cloud networking solutions 
through new Bouncer and Divider concepts

• Mizar autonomously adapts to various traffic 
demands in immense scale cloud environments. 
Allowing Mizar to serve various cloud workloads in 
a multi-tenant environment optimally.

• Extensible support of native networking features 
through custom chains of optimized XDP programs 
hooks and Geneve protocol options. Future
possible Features including: Security, Load-
balancing, Connectivity, Traffic Shaping Control
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Example packet within a network

Three steps to provision an 
endpoint

1. Add the endpoint to N 
Bouncers

2. Provision the endpoint on the 
host

3. Configure the host transit agent 
to tunnel the endpoint traffic 
to a Bouncer out of N
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Example packet cross networks
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New endpoint types

Simple endpoint Host

Scaled endpoint HostHost
Host

1:1

1:N

Proxied Endpoint Another Endpoint
1:1

e.g. container, VM

e.g. autoscaling network function: load-balancer, NAT

e.g. inter-connect services



Problems we are working on
What’s next?



New Problems: Self-optimizing data-plane
• Smart Placement of bouncers and dividers:

• Auto scaling the bouncers and dividers:

• Can scaling and placement ensure SLAs?

• Implementation for a self-contained data-plane (no dependency on another layer 
of management)?



New Problems: Constant Time Distributed Data-plane

• Minimize Hops: 

• Distributed Flow Tables:

• Example services:
• Load-balancer
• NAT
• Cross-VPC routing



New Problems: Packet Forwarding optimization

• Improvements to the veth device driver:

• Per-hop congestion control:

• Ongoing: What Linux stack functions shall be reused and what to avoid?



New Problems: Application Centric Data-plane

• Coworking with TCP as a service.

• What can we learn about the application and inject as Geneve options? And 
what to do about?

• How to support a network as a group of applications (not a conventional 
subnet)?

• New types of endpoints?



Results we have so-far…



Notes

• All the following tests are done in SKB mode (XDP Generic), which has a performance disadvantage

• We wanted to test Mizar’s XDP program in driver mode, but for now we don’t have the needed hardware



Packet Rate (non-TCP) – Scaling Network Services

• HIT: Near line rate packet per second
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Endpoint Update Time with multiple Bouncers

• HIT: Constant time with parallel 
updates (20ms) until the Test 
Controller starts to Hit its re

• With a scalable management-plane 
(on multiple machines), we foresee 
maintenance of constant time 
scaling.

• IMPROVEMENT: Simplifications in 
data-plane as we introduce the 
scaled endpoint. One core 
required.
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Endpoint E2E provisioning time multiple Bouncers

• HIT: Scale remains constant (until 
hitting test controller machine 
limits)

• Primarily overhead on the host 
from creating the virtual interfaces 
by executing shell command (~250 
ms).

• IMPROVEMENT: Expected to 
improve with production ready 
control-plane as it makes use of 
netlink.
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Round Trip Time Effect on End-user

• HIT: Mizar direct path is faster than OVS+Linux Birdge. Though, Still has minimal impact on PPS and TCP BW

• HIT: Even with an increased latency due to the extra hop, the packet per second processed by endpoints 
remains close to line rate

• Primarily benefit of fast-path is latency sensitive applications.
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TCP Bandwidth (On a slow NIC 1Gbps)

• HIT: Comparable throughput to OVS+Bridge (even though we don’t use XDP driver mode). This is applicable for 
NICS < 4Gbps

• The bouncer hop accounts only for 5% less TCP throughput, which shall be negligible for very high bandwidth 
NICs. This is despite that RTT of the extra hop accounts for 45% more latency.
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TCP Bandwidth (On a faster NIC 10 Gbps)

• MISS: The TCP bandwidth caps at around 4Gbps. 

• IMPROVEMENT: Change to Driver mode (require support in NIC)
• IMPROVEMENT:  Change on-host wiring architecture and reduce reliance on Transit Agent
• IMPROVEMENT: Improved device driver for veth
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Memory Idle case
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Memory During TCP Performance Tests

• HIT: Negligible Memory overhead very close to an idle host without networking constructs event with Traffic 
processing 
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CPU TCP Performance Tests

• HIT: CPU Overhead is much better than OVS + Linux bridge scenario
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Memory Idle case (100 Endpoints per host)

• HIT: Memory overhead on Bouncer remain at baseline level
• MISS: On Host memory increases as we provision more endpoints
• IMPROVEMENT: Share one transit agent across multiple endpoints
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CPU During TCP Performance Tests

• HIT: Significantly less CPU overhead during provisioning on both bouncer and host
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